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ABSTRACT
In addition to additive (A) and dominant (D) genetic effects, the

A 3 A interaction (or A 3 A epistatic) effects that control many
quantitative traits are important for genetic and breeding studies. To
estimate these genetic variance components, including genotype 3

environment (G 3 E) interaction, one usually expects to have data
from at least two generations (i.e., F1 and F2) and parents with the
same entries in all environments. Practical difficulties may arise in
implementing such a design. In this study, we performed Monte Carlo
simulations to compare the estimated variance components between
four partial and two complete genetic designs (GDs) using the mixed
linear model approach. Our definition for GD is different from the
traditional definitions of genetic mating designs. Simulation results
showed that the estimated genetic variance components for A, A 3

E, A 3 A epistatic, and A 3 A 3 E effects were unbiased for the
six designs. Among four partial designs, two provided the comparable
results for D and D 3 E effects compared with the complete GDs,
but with slightly larger mean square errors (MSEs), indicating that
some partial GDs can be used when the genetic resources are limited.

ESTIMATION OF GENETIC VARIANCE components is an
important issue in the field of quantitative genetics.

A genetic mating design is often required to reach this
goal. The widely used genetic mating designs for esti-
mating A and D variance components include nested
mating design (North Carolina I), factorial mating de-
sign (North Carolina II), and various types of diallel
mating designs (Griffing’s mating designs). Readers in-
terested in these genetic mating designs may refer to
Chapters 18 and 19 in Lynch and Walsh’s book (1998).
If a full diallel mating design is used, maternal and/or
paternal effects may be detected. Usually, the ANOVA
approach is used to estimate these genetic variance com-
ponents. However, there are some limitations when us-
ing the ANOVA approach: (i) the mating design should
be balanced (with no missing crosses), (ii) it requires the
F1 hybrids, and (iii) the genetic model is not extendable.
Thus, the ANOVA approach has limitations in selecting
genetic models, generations, or data sets.

In addition to A and D effects, the epistatic (gene 3

gene interaction at different gene loci) effects are impor-
tant effects and influence many quantitative traits in
nature. Several quantitative trait locus mapping studies

have shown epistatic effects (Cao et al., 2001; Doebley
et al., 1995; Eshed and Zamir, 1996; Lark et al., 1995;
Lee et al., 2001; Li et al., 1997; Liao et al., 2001; Wu,
2003). Few reports for the epistatic effects in the tradi-
tional quantitative genetic study could be found in litera-
ture (Goodnight, 1988; Cheverud and Routman, 1996;
Xu and Zhu, 1999; Edwards and Lamkey, 2002; McCarty
et al., 2004; Saha et al., 2004). Among the many possible
epistatic effects, the A 3 A (or A 3 A epistatic) effects
are one of the most important one for breeding studies.
A genetic model containing A effects, D effects, and
A 3 A epistatic effects is called the ADAA model
(Cockerham, 1980). This model can also be extended
to include G 3 E interaction effects (Zhu, 1994). For
the ADAA genetic model, data only containing F1s and
parental lines may not be sufficient. On the basis of
Zhu’s study (Zhu, 1994, 1998), at least two generations
such as F1s and F2s and parents are required if the
ADAA model is used. Since G 3 E interactions can
have a significant influence on a quantitative trait, it is
desirable that such traits be measured under multiple
environments. Ideally, the genotypes under different
environments should be balanced (or treated under a
complete GD). In reality, it may be difficult to evaluate
as a complete GD due to practical reasons. Even so,
researchers want to get maximum genetic information
from these experiments with unbalanced designs. The
ANOVA or GLM methods are inappropriate for the
analysis. Mixed linear model approaches offer the flexi-
bility of analyzing various types of unbalanced data (Zuo
et al., 2000, 2001; McCarty et al., 2004); however, the
feasibility of using partial GDs for efficient estimation
of genetic variance components for the ADAA genetic
model remains unknown and warrants further investi-
gation.

In this study, we provide several different GDs (com-
plete and partial) and evaluate the estimation for vari-
ance components via simulation. This study provides
important alternatives to guide breeders or experiment-
ers in utilizing genetic experiments when complete GDs
under multiple environments are difficult to implement.

GENETIC MODELS AND METHODOLOGY
Genetic Model

The genetic model including A, D, A 3 A effects, and their
corresponding G 3 E interaction effects (ADAA model) was
employed for the data analysis (Cockerham, 1980; Zhu, 1994).

The mixed linear models were as follows:

J. Wu, Dep. of Plant and Soil Sciences, J.N. Jenkins and Jack C.
McCarty, Crop Science Research Laboratory, USDA-ARS, D. Wu,
Dep. of Mathematics and Statistics, Mississippi State Univ., Mississippi
State, MS 39762. *Corresponding author (jnjenkins@ars.usda.gov).

Published in Crop Sci. 46:174–179 (2006).
Crop Breeding Genetics & Cytology
doi:10.2135/cropsci2005.04-0025
ª Crop Science Society of America
677 S. Segoe Rd., Madison, WI 53711 USA

Abbreviations: s2
m, variance component mean; A, additive; D, domi-

nance or dominant; E, environment; G, genotype; GD, genetic design;
MINQUE, minimum norm quadratic unbiased estimation; MSE,
mean square error.
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Parents:

yhiik(P) 5 m 1 Eh 1 2Ai 1 Dii 1 4AAii 1

2AEhi 1 DEhii 1 4AAEhii 1 Bk(h) 1 ehiik [1]

F1:

yhiik(F1) 5 m 1 Eh 1 (Ai 1 Aj) 1 Dij 1 (AAii 1

AAjj 1 2AAij) 1 (AEhi 1 AEhj) 1 DEhii 1

(AAEhii 1 AAEhjj 1 2AAEhij) 1 Bk(h) 1 ehijk [2]

F2:

yhiik(F2) 5 m 1 Eh 1 (Ai 1 Aj) 1 (1/4Dij 1

1/4Djj 1 1/2Dij) 1 (AAii 1 AAjj 1 2AAij) 1

(AEhi 1 AEhj) 1 (1/4DEhii 1 1/4DEhjj 1

1/2DEhij) 1 (AEEhii 1 AAEhjj 1 2AAEhij)

Bk(h) 1 ehijk [3]

F3:

yhiik(F3) ¼ m 1 Eh 1 (Ai 1 Aj) 1 (3/8Dij 1

3/8Djj 1 1/4Dij) 1 (AAii 1 AAjj 1 2AAij) 1

(AEhi 1 AEhj) 1 (3/8DEhii 1 3/8DEhjj 1

1/4DEhij) 1 (AEEhii 1 AAEhjj 1 2AAEhij) 1

Bk(h) 1 ehijk [4]

Where m is the population mean, a fixed effect; Eh is the
environment effect, either random or fixed (fixed in this
study); Ai (or Aj) is additive effect from parent i (or j); Dii,
Djj, or Dij is the dominance effect; AAii, AAjj, or AAij is the
additive 3 additive epistatic effect; AEhi (or AEhj) is additive 3
environment interaction effect; DEhii, DEhjj, or DEhij is the
dominance 3 environment interaction effect; AAEhii, AAEhjj,
or AAEhij is the additive 3 additive 3 environment interaction
effect; Bk(h) is the block effect; and ehijk is the random error.

Equations [1] to [4] can be expressed in the form of vectors
and matrices as follows.

y 5 1m 1 XEbE 1 UAeA 1 UDeD 1 UAAeAA 1

UAEeAE 1 UDEeDE 1 UAAEeAAE 1 UBeB 1

e 5 Xb 1 O8
u51Uueu [5]

In this model, we assume that the E effect is fixed, where m
is the population mean; 1 is the vector with all elements 1; eA
is the vector for additive effects, eA < N(0, s2

AI); UA is the
incidence matrix for additive effects, eD is the vector for domi-
nance effects, eD < N(0, s2

DI); UD is the incidence matrix for
dominance effects; eAA is the vector for additive 3 additive
effects, eAA < N(0, s2

AAI); UAA is the incidence matrix for
additive 3 additive effects; eAE is the vector for additive 3
environment effects, eAE < N(0, s2

AEI); UAE is the incidence
matrix for additive 3 environment effects, eDE is the vector
for dominance 3 environment effects, eDE < N(0, s2

DEI); UDE

is the incidence matrix for dominance 3 environment effects;
eAAE is the vector for additive 3 additive 3 environment ef-
fects, eAAE < N(0, s2

AAE); UAAE is the incidence matrix for
AAE effects; eB is the vector for block effects, eB < N(0, s2

BI);
UB is the incidence matrix for block effects; ee is the vector
for random errors, ee < N(0, s2

e I).

Variance Component Estimation
The minimum norm quadratic unbiased estimation

(MINQUE) approach was proposed by Rao (1971) for esti-

mating variance components. The variance components in
the ADAA model can be estimated by solving the following
MINQUE normal equations for u, v 5 1, 2, …, 8.

[tr(UT
uaQaUT

vUvQaUu)][s2
u] ¼ [yTQaUuUT

uQay] [6]

where the trace (tr) is the sum of diagonals of a matrix, and

Qa 5 V21
a 2V21

a X(XTV21
a X)21XTV21

a , [7]

where Va 5 O8
u51 auUuUT

u and V21
a is the inverse matrix of Va

with prior values au in place of s2
u in V. In this simulation

study, we set au 5 1, u 5 1, …, 8, so this approach is called
MINQUE(1) (Zhu, 1989).

Genetic Designs
Six GDs evaluated are listed in Table 1. Note that a partial

GD in this study could be where the genotypes or generations
are different across two environments and a complete GD is
one where genotypes and generations used in two environ-
ments are exactly the same. Thus, our notations for the partial
and complete GDs are different from the partial and complete
mating GDs defined by Comstock and Robinson (1948, 1952)
and Griffing (1956). Both partial and complete GDs could
include the genetic materials obtained from either a complete
or partial mating design. Designs 1 and 2 were called complete
GDs because genotypes and generations across two environ-
ments were the same, while Designs 3 to 6 were called partial
GDs because genotypes or generations were different in the
two environments (Table 1).

Simulation
For simplicity, a randomized complete block design with

four replicates in each environment was used in this simulation
study. Note that in this simulation study, the number of geno-
types could be different between the two environments (Ta-
ble 1). The designs are used based on a set of half-diallel crossed
of seven parents. On the basis of the six designs in Table 1,
we generated the phenotypic data with each effect vector follow-
ing a normal distribution, eu < N(0, s2

u I). Variance components
were estimated by the MINQUE(1) approach (Zhu, 1989).
Each GD with three sets of input values was analyzed with
500 simulations. In addition to calculating each variance com-
ponent mean (ŝ2u

2), the corresponding bias was calculated ac-
cordingly by ŝ

2
u
2 � su

2, where su
2 was the preset value. The MSE

for each parameter was calculated by MSE 5 bias2 1 var(ŝ2u
2).

All Monte Carlo simulation programs and program for actual
data analysis were written in C11 language.

Table 1. Six genetic designs for the ADAA model.†

Genetic design Environment Entries

1 1 7P 1 21F1 1 21F2

2 7P 1 21F1 1 21F2

2 1 7P 1 21F2 1 21F3

2 7P 1 21F2 1 21F3

3 1 7P 1 21F1

2 7P 1 21F2

4 1 7P 1 21F2

2 7P 1 21F3

5 1 7P 1 21F1

2 7P 1 21F1 1 21F2

6 1 7P 1 21F2

2 7P 1 21F2 1 21F3

†ADAA 5 a genetic model containing additive (A) effects, dominant
(D) effects, and A 3 A epistatic effects.
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SIMULATION RESULTS
Different sets of input values have been used in our

simulation study and similar conclusions resulted. For
simplicity, we only reported the influence of the six GDs
on the estimation of each variance component using the
ADAA model for three cases: (i) all genetic effects, (ii)
no A 3 A epistatic effects, and (iii) no D effects. The
simulation results (bias and MSE) are summarized in
Tables 2–4, respectively.

The bias measures the difference between mean esti-
mate and the preset value. Negative bias indicates under-
estimation for a parameter and positive bias indi-
cates overestimation for a parameter. Thus the smaller
a bias is, the more unbiased the estimate will be. The
MSE measures the precision of an estimate. A smaller
MSE indicates a more precise estimation. Simulation
results showed that the estimated genetic variance com-
ponents for A effects, A 3 E effects, A 3 A epistatic
effects, and A3A3 E effects were unbiased for the six
designs (Tables 2, 3, and 4). The variance components of
D effects and D 3 E effects could be estimated, but
with large bias for Designs 3 and 4; however, estimates
were almost unbiased for Designs 1, 2, 5, and 6. Designs
5 and 6 gave similar mean estimated variance compo-
nents with a little larger MSE, as we expected. Designs
3 and 4 would obtain biased estimation for D and D3 E
variances when A 3 A epistatic effects exist.

Comparing the results in Tables 2, 3, and 4, we ob-
served that the presence or absence of D effects or
A 3 A effects did not affect the bias for each variance
component for GDs 1, 2, 5, and 6, indicating that vari-
ance component estimation under these four GDs are
robust under different cases. The variance components
for A, A 3 A, A 3 E, and A 3 A 3 E, and residual
effects were unbiased estimated with D or A3A effects
absent or present for GDs 3 and 4 (Tables 3 and 4). It
indicated that the estimations for variances components
of these effects under GDs 3 and 4 were not influenced
by the absence or presence of D effects or A3A effects.
With all genetic effects present, the D variance was
generally underestimated for GDs 3 and 4, while D 3 E
variance was generally overestimated (Table 2), indicat-
ing that GDs 3 and 4 provide biased estimations for D
and D 3 E effects when all genetic effects exist. When
there was no A3A epistatic effect, the variance compo-
nents for D effects and D 3 E effects can be estimated
with slight bias for GD 3, while D variance can be
estimated with a slight bias (24.06) and variance for
D 3 E effects with a large bias for GD 4 (Table 3). With
no influence of D effects, D variance were estimated
unbiasedly but with large MSE for both GDs 3 and 4,
while variance for D 3 E effects were overestimated
for these two GDs.

In summary, GDs 5 and 6, which were partial, pro-

Table 2. Simulations results for the ADAA model with existence of all genetic effects by 500 simulations.

GD 1† GD 2 GD 3 GD 4 GD 5 GD 6

Value Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

s2
A 20 0.98 7.55 1.19 8.63 1.74 12.36 1.96 13.17 22.20 11.63 22.31 12.39

s2
D 20 20.29 0.67 2.82 10.09 211.21 270.23 220.00 868.58 0.70 1.87 21.72 12.05

s2
AA 20 0.24 0.27 0.51 0.49 1.77 5.41 1.69 3.53 0.50 0.53 0.73 0.79

s2
AE 20 21.37 4.47 2.17 7.69 1.45 7.33 22.88 12.95 2.03 7.04 2.92 11.57

s2
DE 20 0.02 0.47 23.67 16.16 12.38 288.46 42.73 2448.99 0.05 1.32 2.04 14.02

s2
AAE 20 20.07 0.12 20.69 0.56 21.32 3.91 21.53 3.13 20.10 0.16 0.18 0.15

s2
e 20 20.01 0.01 20.04 0.01 0.04 0.01 20.10 0.02 20.15 0.03 20.06 0.01

†Genetic Designs 1 through 6 (GD1–GD6) are defined in Table 1.

Table 3. Simulations results for the ADAA model with no A 3 A epistatic effects by 500 simulations.

GD 1† GD 2 GD 3 GD 4 GD 5 GD 6

Value Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

s2
A 20 0.69 1.47 1.18 2.31 1.98 5.00 1.38 2.91 1.32 2.87 2.85 9.15

s2
D 20 20.38 0.73 2.81 10.04 2.65 14.26 24.06 51.75 0.70 1.03 0.67 2.22

s2
AA 0 0.73 0.54 0.54 0.29 0.23 0.17 0.72 0.56 0.74 0.56 0.58 0.34

s2
AE 20 20.71 0.87 20.66 0.81 21.06 1.69 21.85 3.92 20.86 1.13 20.17 0.40

s2
DE 20 0.15 0.49 23.75 16.74 24.49 28.41 19.10 401.60 0.21 0.53 20.42 2.86

s2
AAE 0 0.32 0.10 0.31 0.10 1.04 1.22 0.00 0.04 0.26 0.09 0.34 0.12

s2
e 20 20.01 0.01 20.04 0.01 0.04 0.01 20.10 0.02 20.15 0.03 20.05 0.01

†Genetic Designs 1 through 6 (GD1–GD6) are defined in Table 1.

Table 4. Simulations results for the ADAA model with no D effects by 500 simulations.

GD 1† GD 2 GD 3 GD 4 GD 5 GD 6

Value Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

s2
A 20 0.33 5.58 20.64 6.71 20.10 8.37 20.49 8.33 23.15 15.51 22.44 12.10

s2
D 0 0.53 0.38 2.08 5.43 0.00 112.83 0.00 416.87 1.13 1.68 0.00 6.05

s2
AA 20 20.36 0.34 20.09 0.22 1.47 4.07 0.66 1.05 20.32 0.32 0.06 0.23

s2
AE 20 21.89 5.93 1.31 4.46 1.24 5.80 22.51 10.47 1.18 4.00 2.44 8.63

s2
DE 0 0.46 0.38 0.00 1.77 14.79 325.49 28.90 1387.17 0.10 0.45 0.81 7.16

s2
AAE 20 20.43 0.29 20.90 0.88 21.94 5.51 21.33 2.48 20.18 0.14 20.12 0.12

s2
e 20 20.01 0.01 20.04 0.01 0.03 0.01 20.11 0.02 20.15 0.03 20.06 0.01

†Genetic Designs 1 through 6 (GD1–GD6) are defined in Table 1.
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vided similar and robust estimations for variance com-
ponents with slightly larger MSE compared with GDs
1 and 2, which are complete, in two environments. This
suggested that partial GDs 5 or 6 could be a good choice
when not enough seeds (or individuals) of F1 and F2, or
F2 and F3 are obtained. It also appeared that the GDs
did not have great influence on estimation for A (includ-
ing A3E) variances, andA3A (including A3A3E)
variances though the corresponding MSE might vary.
However, some partial GDs such as GDs 3 and 4 had
great impact on the estimation of D andD3E variances
under some situations, especially when D effects exist.

Actual Data Example
Ten upland cotton lines and their 20 F1 and F2 hybrids

were planted at Zhejiang Agricultural University in
1992 and 1993 (Wu et al., 1995). The mating design was
the North Carolina Design II: five parents as females
were crossed with the other five male parents to produce
F1 seeds in 1991 and 1992 at the same university. Note
that only 20 F1 hybrids had enough seeds for planting
so the genetic mating design was partial. F1 seeds were
sent to Hainan Province, China, to produce F2 seeds in
the winter of 1991. The experiment was a completely
randomized block design with three replicates each year.
The trait lint percentage (lint weight divided by cotton
weight) was used as an example in this study. From this
data set, we organized seven data sets (Table 5), where
Data Set 1 was equivalent to GD 1 in Table 1, Data
Sets 2 and 3 were equivalent to design 3 in Table 1, and
Data Sets 4 to 7 were equivalent to GD 5. These data
sets were used to estimate the variance components for
lint percentage using the ADAAmodel. The resampling
(jackknife) method was applied to calculate the stan-
dard error for each parameter by removal of each repli-
cate within each environment. The approximate t test
(one-tail) was used to detect the significance of each
variancecomponent(Miller,1974).Inthisexample,df55.
The estimated variance components for this trait are
summarized in Table 6. The estimated variance for re-
sidual was consistent for seven data sets. Additive vari-
ance for lint percentage was significantly detected for
all data sets. In general, the results from Data Sets 4,
5, 6, and 7 were closer to those from the full and com-
plete Data Set 1 than from Data Sets 2 and 3. The

results showed an agreement with the simulation studies
conducted in this study.

DISCUSSION
The partial GDs evaluated in this study could be

caused by different genotypes, generations, or entry
numbers in a multiple-environment experiment. Thus,
our definition for the partial GD is different from the
partial mating GDs (Griffing, 1956). Our complete GD
is a data set that has the same genotypes in all environ-
ments regardless of genetic mating designs. Data ob-
tained from such partial GDs can be considered as un-
balanced data which usually cannot be appropriately
analyzed by the ANOVA method or the GLM method,
especially when a complicated genetic model like the
ADAA model is applied. The mixed linear model ap-
proaches can be used to estimate variance components
even though genotypes vary across environments. These
approaches provide useful information to the research-
ers even though they have data sets obtained from par-
tial GDs. The ADAA genetic model and one of the
mixed linear model approaches, the MINQUE ap-
proach, have been proposed for more than two decades
(Rao, 1971; Cockerham, 1980); however, the main pur-
pose of this study is to provide some useful information
on how to handle various types of genetic data sets when
some data points are missing using the MINQUE ap-
proach.
A good GD should provide reliable results and save

resource(s). Regarding the ADAA genetic model, our
simulation results showed that GDs 5 and 6, which were
partial, provided similar estimations for variance com-
ponents with slightly larger MSE compared with the
GDs 1 and 2, which were complete in two environments.
This suggested that partial GDs 5 or 6 could be a good
choice when enough seeds (or progenies) of F1 and
selfed F2, or selfed F2 and F3, are difficult to obtain.
Partial GD 3 or 4 would have large impact on the estima-
tion of D and D 3 E variances, yet only little impact
on A and A 3 A variance components; thus, these two
GDs are not recommended for a general use. Our results
from an actual data example had good agreement with
our simulated results. Therefore, this simulation study
provided important guidance for conducting a genetic
experiment when it is difficult to run a complete GD in
practice. Furthermore, our simulation results suggested
that the mixed linear model approaches can also be
applied to more complicated genetic models such as
plant seed models (Zhu and Weir, 1994a, 1994b) with
partial GDs.
Even though the mating design in our example was

partial (with five missing crosses), we found similar re-
sults when carrying out 500 simulations using complete
and partial GDs listed in Table 1 (data not presented).
Thus, it appeared that the efficiency of estimating vari-
ance component in the ADAA model was more related
to the GDs (partial or complete) rather than the mating
designs. In the present simulation study, we choose 20
as a preset value for A variance and residual variance
and 20 or 0 as a preset value for D variance and A 3 A

Table 5. Seven combinations from a 2-yr cotton data set (Wu et
al., 1995).

Data set Environment Entries

1 1992 10P 1 20F1 1 20F2

1993 10P 1 20F1 1 20F2

2 1992 10P 1 20F1

1993 10P 1 20F2

3 1992 10P 1 20F2

1993 10P 1 20F1

4 1992 10P 1 20F1

1993 10P 1 20F1 1 20F2

5 1992 10P 1 20F2

1993 10P 1 20F1 1 20F2

6 1992 10P 1 20F1 1 20F2

1993 10P 1 20F1

7 1992 10P 1 20F1 1 20F2

1993 10P 1 20F2
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epistatic variance. We conducted more simulations than
what we reported in this manuscript. This included dif-
ferent inputs of G 3 E interaction effects and A 3 A
interactions and similar conclusions resulted (data not
shown). Research may be conducted for additional in-
vestigations with different preset values. In addition, re-
searchers may investigate more complicated cases, such
as missing crosses and/or missing plots. Our computer
program provides the capability of evaluating the relia-
bility of a specific GD (not mating designs) before ana-
lyzing a real data set. It can also be used to evaluate
several potential GDs and choose an appropriate one.
The simulation program we developed can be obtained
from the authors by request.

Theoretically, increasing the number of parents will
lead to higher statistical testing powers and more robust
estimation. The number of parents in our simulation
study was small compared with the other studies (Tang
et al., 1993; Wu et al., 1995; McCarty et al., 2004), yet
it still provided useful information on how to conduct
experiments with various types of GDs when genetic
resources such as seed supply are limited.

In this study, we focused on the ADAA genetic
model. In some cases, other high-ordered epistatic ef-
fects may be important for some quantitative traits. For
example, A 3 D and D 3 D can be important genetic
effects. On the basis of the mixed linear model approach,
the ADAA genetic model can extended to include these
genetic effects; however, it remains unknown what GDs
should be used to estimate these genetic variance com-
ponents appropriately. This needs to be evaluated with
another simulation study.

Estimating the standard error for each parameter is
important for a significance test. Two methods, jack-
knife and bootstrap (Efron, 1982; Davison and Hinkley,
1997), can be used to estimate the standard errors. In
this study, we used the jackknife method. This can be
done by removal of one or several measurements each
time; for example, one genotype within each environ-
ment, or one replication (or one block) within each
environment. The latter is called the group-based jack-
knifing method. Then, the mean jackknife values could
be tested by an approximate t test. However, we found
the number of cells (genotypes in a replication or a
block) could be different across environments (see GDs
5 and 6, Table 1; or Data Sets 4–7 in Table 3). The
reasons we chose the block-based jackknife approach
were (i) it reduced the computational intensity while
retaining the maximum number of genotypes in the data
set after removal of one replication within each environ-

ment, and (ii) it kept the same degrees of freedom for
t tests.
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